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the Fe** iéns have on the powder pattern if it was.present (a)asa separatef
iron hydroxide phase and (b) substituting for A3 in the crystal structure o 1
Al(OH);.
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A working knowledge of space groups is valuable for anyone interested in
| crystal chemistry, even though one does not wish to become involved in the
actual determination of crystal structures. Without such a knowledge, one is
| entirely dependent for information about crystal structures on the availability of
| three-dimensional crystal models and good quality drawings in the literature.
| Once the basic principles of space groups are grasped, however, it is possible to
i make drawings of a structure for oneself, from different orientations if required, or
p even to construct one’s own three-dimensional models. All that is needed is a
listing of the atomic coordinates in the structures and details of the relevant space
| group.

- This chapter is written for the non-crystallographer; short-cuts are made and
. many of the complications and subtleties of space groups are avoided. The main
objective is to show the relation between space groups and sets of atomic
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coordinates, on the one hand, and three-dimensional crystal structures, on the
other. As a background, it is assumed that the reader is familiar with unit cells,

crystal systems, Bravais lattices and the elements of point and space symmetry. ;,
Summaries of these are given in Section 5.3 and Tables 5.2, 5.3. We begin |

with a discussion of point groups. Although point groups are not absolutely .
essential to the stated objective of this chapter it is well worth while to make
their acquaintance. Point groups are much simpler than space groups because |

the elements of translational symmetry are absent from point groups. They |
therefore provide a relatively painless method of introduction to the subject

while introducing the necessary concepts at an early stage.

6.1 Point groups

The elements of point symmetry which may be observed in crystals are the

rotation axes 1, 2, 3, 4 and 6, the inversion axes 1,2,3,% and 6, and the mirrof §
plane, m (which is equivalent to 2). These symmetry elements may occur either !
alone or in various possible combinations with each other to give a total of thirty- §
two possible crystallographic point groups. The method of drawing and labelling §
point groups which is used here is the same as that recommended by International 4

Table 6.1 Point symmetry elements

Symmetry element Written symbol Graphical symbol

i None
Rotation 2 )
axes 3 A
4 4
6 &
1 None*
Inversion N =m) .t
¥=3+0) A
axes 4 ®
& = 3/m &
Mirror plane m _—

* The inversion axis, 1, equivalent to a centre of symmetry, is represented as Oin space
groups but does not have a formal graphical representation in point groups, even
though it is present in many point groups.

tThe inversion axis 3 does not have a separate graphical symbol other than that of the
mirror plane equivalent to it.
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Table 6.2 The thirty-two point groups

Crystal system Point groups

Triclinic 1,1

Monoclinic 2,m,2/m

Orthorhombic 222, mm2, mmm

Tetragonal 4,4, 4/m, 422, dmm, 42m, 4/mmm
Trigonal 3,3,32,3m, 3m

Hexagonal 6, 6, 6/m, 622, 6mm, 6m2, 6/mmm
Cubic 23, m3, 432, 43m, m3m

Tables Jor X-ray Crysta.llogr.aphy, Vol. 1. The symbols for the different point
;symme.try elemeqts are given in Table 6.1. The thirty-two point groups, classified
according to their crystal system, are listed in Table 6.2 and Appendix 5.

6.1.1 Representation of point groups and selected examples

Pomt groups are represented graphically as stereograms. Stereograms are used
a lot'm, fo‘r example, geology to represent direction in crystals and to show the
rclatlvel orientation of crystal faces. For present purposes, all we need to know is
that point groups are represented by a circle (a sphere in projection), usually witl;
one of the axes perpendicular to the plane of the circle and passin’g through its

o |O (i (i)
(@
ol° 222

ol (M (i)
(b)

4|3

°1° mm2

oo (W) /T\(m
c Y —

AN P4

Fig. 6.1 The orthorhombic point groups
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centre. The three orthorhombic point groups are drawn out in Fig. 6.1. FOII; each, ‘.
two diagrams are used. The right-hand one shows the s.y'mmetry elements t a:i a;e 4
present and the left-hand one shows the equivalent positions that are generated by

the presence of these symmetry elements.

6.1.1.1 222

This orthorhombic point group has three mutually perpendicular twofold §

. b
axes. That axis perpendicular to the plane of tht.e paper is represen;ed kt>y :ﬁe 1
symbol in the centre of the circle (a, ii). The axes lying honzoptally an fvc:r I::bo]);
in the plane of the paper are representled by the two respective pairs of sy ',,
i ircumference of the circle. ‘

1)“;%13;;62:“0;6 of three mutually perpend.ic.:ula.r twofold axes gives ;eE'SdOf ﬁ::;
equivalent positions(a,i). An equivalent position is really the same as the fx e;n "
orientation’ used in defining symmetry elements. Thus the presence 0 . (211 t.gal “
twofold axis means that an object possessing such symmetry has t;v]odx en 1l<1:a
orientations (separated by rotation of 180°). In other worQs, a two ;)1 laf)tuls1 andﬁ
associated with it two equivalent positions. The dots. and circles 11; the e -e nan “
diagrams represent equivalent positions that are not in the plane 10d’t e paepbeio ‘
us say that dots are above the plane and open circles are an equal distanc
th?l‘fllea:eec.;uence of steps that is used in der.iving'the equivalent‘ POSIFIOI"S(% ep?}l:;
group 222 are set out in Fig. 6.2. Commencing with a single .pOSII_IOIl in 1(11) fle thin
vertical line that bisects the circle is'merely a construction llqe), the e ::ate ;
adding a twofold axis perpendicula.r to the plane of the papei1 is thot g:tr:sve <2
second position (ii). Both positions in (i) must be at the same height,

(iii)

W (i)

A twofold axis
is present in the
direction ~<—

i i itions i i 222. In step 1, a twofold axis
Fig.6.2 Equivalent positions in the pmpt group axi
p:*,grpendicglar to the plane of the paper is added. In 2,2 second_ twofold axis, in
the plane of the paper and lying horizontal, is added. In 3,a tl}lrd twofold axtl,s,
lying vertically in the plane of the paper has been automatically created by

step 2
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plane of the paper, since the twofold axis is perpendicular to this plane. On adding
a second twofold axis, in the plane of the paper and, say, in the horizontal
direction, each of the positions in (ii) generates another to give the four positions
shown in (iii). Since this second rotation axis is in the plane of the paper, the two
new positions generated by this axis must be below the plane of the paper and so
are represented as open circles. Comparison of (iii) and (iv) shows that the
addition of a third twofold axis, in the plane of the paper and lying vertical, does
not lead to any extra equivalent positions in addition to the four already present.
In fact, this third axis is also present in (iii) and is generated automatically by the
other two axes. The point group 222 could therefore be represented in the shortest
possible notation, as 22 because the third twofold axis is not independent. The
longer notation is normally used in order to show consistency with the essential
symmetry requirements (Table 5.2) for orthorhombic unit cells.

6.1.1.2 mm2

This orthorhombic point group contains two mirror planes at right angles to
cach other with a twofold axis passing along the line of intersection of the mirror
planes. In (b, ii) of Fig. 6.1, the twofold axis is perpendicular to the paper and the
mirror planes are indicated in projection as the thick lines lying horizontally and
vertically. This point group also has four equivalent positions and all are at the
same height relative to the plane of the paper (b, i). Labelling the starting position
as 1, the effect of adding the twofold axis is to generate position 3. The vertical
mirror plane then generates position 2 from 1 and position 4 from 3. The
horizontal mirror plane relates positions 1 and 4 and also 2 and 3; it does not
create any new positions. As in the previous example, the third symmetry element
is not independent but is generated by the combined operation of the other two
clements. The choice of order of the symmetry elements is immaterial; any two
out of the three, in combination, will generate the third element.

6.1.1.3 mmm

This orthorhombic point group contains, as essential symmetry elements, three
mirror planes mutually perpendicular to each other and, as a consequence of the
mirror planes, three mutually perpendicular twofold axes are generated. (Note
that the reverse process does not occur. The three twofold axes in 222 do not lead
to the generation of mirror planes.) These symmetry elements are shown in (c, i)
of Fig. 6.1. The symbols are the same as in the two previous examples, with the
#ddition of the thick circle which indicates the presence of a mirror plane in the
plane of the paper.

Eight equivalent positions occur in the point group mmm, four at the same
height above the plane of the paper and four at the same height and below the

- plane (c,i). To see how these positions may be generated, the action of any two

mirror planes generates four positions in a plane, as shown in (b, 1) for the point

| group mm2. The action of the third mirror plane (the one lying in the plane of the
| puper) gives the eightfold set of positions in (c, i).
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Fig. 6.3 Triclinic point group, 1, with a centre of symmetry

Only three orthorhombic point groups are possible. If other combinations of
symmetry elements are tried, many will turn out to be equivalent to one gf the ]
three allowed point groups. For instance, the combination 22m can readily be ]
shown to yield the same set of positions and symmetries as mmmn. 4

Of the three orthorhombic point groups, only mmm possesses a centre of ]
symmetry (1). The appearance of a centre of symmetry is shpwn in Fig. 6.3 fo_r ‘the
triclinic point group 1. Inversion through the centre of the circle converts position |
1 to 2, and vice versa. Each position in mmm has a centrosymmetrically related .}
partner, but this is not the case for 222 and mm2. The relevance of centrosym- 3

metry is discussed in Section 6.2.

6.1.14 32

" Let us consider one example of trigonal symmetry which is characterizefi ‘t')y aj
single threefold axis (Fig. 6.4). As the threefold axis .is the Pnique axis it 1;\
arranged to be perpendicular to the plane of the paper (Fig. 6.4 (i) ). There are also]
three twofold axes lying in the plane of the paper and at 60° to each other. In fact)fg«“
only one of these is independent and so only one appears ir} ’Fhe symbol 32. To fing}
the equivalent positions in this point group, start with position 1 and consider thﬁ 7
effect of the threefold axis (rotation by 120°). Positions 3 and 5 result. Then
consider the effect of one of the twofold axes, say XX in (ii). This generates thre
new positions: 1 —4, 3 2and 5 — 6,and two more twofold axes YY' and ZZ' arg;

also automatically generated, e.g. axis YY' relates positions 1 and 6, 2 and 5, 3

and 4. k

Of the thirty two crystallographic point groups, twenty seven are non-cub!_
and we have looked at five of these. The remaining twenty two can be treated
along similar lines and should cause no problem. The main difficulty likely to oy

encountered concerns the orientation of the different symmetry element‘s i

point group. Some guidelines are as follows. In monoclinic, hexagonal, trigon§§

and tetragonal point groups, the unique axis is arranged to be perpendicular {4

b4
(i X Gi)

GYARNAVAY
NAY

Fig. 6.4 The trigonal point group 32

1

X z
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the plane of the paper (stereogram). A slashed line, as in 4/mmm, indicates that, in
this case the fourfold axis has a mirror plane perpendicular to it; it would be
clearer if the symbol were written as (4/mymm. In tetragonal, trigonal and
hexagonal point groups, the twofold axes, as in 42m, are always in the plane
perpendicular to the unique axis (in this case perpendicular to 3).

The five cubic point groups are rather more complicated to work with as they
are difficult to represent by simple two-dimensional projections. This is because
there are so many symmetry elements present and many are not perpendicular to
each other, e.g. threefold and fourfold axes are at 45° to each other. Whereas non-
cubic point groups may be drawn with their symmetry axes either in the plane or
perpendicular to the plane of the stereograms, this is not generally possible for
cubic point groups and oblique projections are needed to represent the threefold
axes (see Appendix 5). No further discussion of cubic point groups will be given.

6.1.2 Examples of point symmetry of molecules: general and special positions

The relationships between point symmetry and structure are best seen by some
cxamples taken from small molecules. Consider the methylene dichloride
molecule, CH,Cl,(Fig. 6.5). This possesses a single twofold axis which bisects the
H—C—H and Cl—C—Cl bond angles (a) and two mirror planes (b and c). The
twofold axis is parallel to the line of intersection of the mirror planes. These
symmetry elements may be represented as in (d), in which the twofold axis is
perpendicular to the plane of the paper and the mirror planes appear in
projection as horizontal and vertical lines. From inspection of Fig. 6.1, it is seen
that CH,Cl, belongs to the point group mm2. However, the number of equivalent
positions in mm2 (b, i) is four, and this does not appear to tally with the realities of
the CH,Cl, molecule. If we take a hydrogen atom as one equivalent position,
there are only two hydrogens present and therefore only two possible equivalent

ci 4; 2 c ol cl

©

(s )] (e

Fig. 6.5 The point group mm2 of the methylene dichloride molecule
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Cl
(a)/k
H

\\
3. H H

© .

Fig. 6.6 The point group 3m of the methyl chloride molecule

positions in the molecule. The anomaly is resolved k?y letting the.el:lulv‘e‘ljlen;
positionsin Fig. 6.1(b, 1) lieon the vertical mirrqr plgne instead of tg ;n er ?1 te “?, ]
the mirror. This yields the arrangement shown.m Flg. 6.5(e),_wh1c astgn yin ‘
equivalent positions. Thus, positions 1 _agd 2 in Fig. 6.1 (b, 1) becomc; zizalg g
pbsition A in Fig. 6.5(e). We can now dlstmgulsp between }l}e ge‘zn;rale:lt aleng
positions of a point group and the special equivalent positions; t.e a el; ar isg
when the general positions lie-on a symmetry element .such as a mirror p %
rotation axis. Thus A and B in Fig. 6.5(e) are special posmons.h - rid;,,@

As a further example, consider the point symmetry of the met ly ;: o ‘th |
molecule, CH,Cl (Fig. 6.6). The molecule possesses one threefold axis e;l ontgh hey
direction of the C—Cl bond (a). It does not hav.e any thfold axes l;lut fasld ;::q
mirror planes oriented at 60° to each other; one is shown in(b). The threefo is

coincides with the line of intersection of the mirror planes. The symmet

elements are shown as a stereogram in (C) and by comparison of this witly

Appendix 5 we see that the point group is 3m. The six general equivalent pl?is‘i:;:n
in 3m are given in (d). We again have the? p.roblem»that there are more ﬁq vale
positions than possible atoms, and this is overcome by allo».w.ng the tgh ’;‘
positions to lic on the mirror planes (€); the number of positions is the s

reduced to three.

6.1.3 Centrosymmetric and non-centrosymmetric point groups

Of the thirty two point groups, twenty one do not possess 2 Ct:l;it_rcei ;,
symmetry. The absence of a centre of symmetry is an e§s§ntlal butlnott sult ic aen
requirement for the presence in crystals.o'f optncal activity, pyroe e§ Llc ty an
piezoelectricity (Chapter 15). Optical activity 1s confined to fifteen of the tw ‘
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one non-centrosymmetric point groups and piezoelectricity to twenty of these.
This is of use in, for example, the search for new materials with piezoelectric
activity; it is a waste of time trying to detect piezoelectricity in crystals whose
point group is not among the twenty active groups! Crystallographers also make
some use of the piezoelectric effect in structure determinations. It is a
considerable help in solving an unknown structure to know the space group at
the outset. If a test for piezoelectricity is carried out with positive results, this
limits the choice of space group to the non-centrosymmetric ones. The absence of
piezoelectricity does not necessarily mean, however, that the point group and
space group are centrosymmetric.

6.2 Space groups

The combination of the thirty-two possible point groups and the fourteen
Bravais lattices (which in turn are combinations of the seven crystal systems, or
unit cell shapes, and the different possible lattice types) gives rise to 230 possible
space groups. All crystalline materials have a structure which belongs to one of
these space groups. This does not, of course, mean that only 230 different crystal
structures are possible. For the same reason, the human body (from its external
appearance) is not the only object to belong to point group 2—teapots also do.

Space groups are formed by adding elements of translation to the point groups.
The space symmetry elements, screw axes and glide planes are derived from their
respective point symmetry elements, rotation axes and mirror planes by adding a
translation step in between each operation of rotation or reflection (see Section
5.3.4). A complete tabulation of all the possible screw axes and glide planes and
their symbols is not given here. Instead, symbols are explained as they arise. Also,
there is space to discuss only a few of the simpler space groups. The interested
reader is recommended to acquire his own copy of International Tables for X-ray
Crystallography, Vol. |; once the basic rules have been learned, by working
through the examples given here, there should be no difficulty in understanding
und using any space group.

The written symbol of a space group is a list of between two and four -
characters. The first character is always a capital letter which corresponds to the
luttice type—P, I, A, etc. The remaining characters correspond to some of the
symmetry elements that are present. If the crystal system has a unique or
principal axis (e.g. the fourfold axis in tetragonal crystals), the symbol for this axis
uppears immediately after the lattice symbol. For the remaining characters, there
are no universal rules but, instead, different rules for different crystal systems. As
these rules are not essential to an understanding of space groups and are not
usually of interest to the non-specialist, they are not repeated here.

Space groups are usually drawn as parallelograms with the plane of the
purallelogram corresponding to the xy plane of the unit cell. By convention
(Fig. 6.7), the origin is taken as the top left-hand corner, with y horizontally, x
vertically (downwards) and the positive z direction pointing up out of the plane of
the paper. For each space group, two parallelograms are used, the left-hand one
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Fig. 6.7 Convention used to label axes in a space group

to give the equivalent positions and the right-hand one the symmetry elements i
that are present. Let us see some examples. Each one will introduce at least one

new feature.

6.2.1 Triclinic PT1

i is primitive and centrosymmetric; it is shown in Fig. 6.8. The 4
rig?l{ﬁjﬁﬁ?i?g?iﬁ sh%ws the symmetry elements: t_here are centres of syrfnmet‘ry |
at the origin (f), midway along the a and b edges and in the middle of the Cface (1.‘e. 1
the face bounded by aand b). Additional centres of symmetry, not shown, occur u} ]
the middle of the other faces, halfway along the ¢ edge and at the body centre O };
the’l";llglltefi?g;md diagram gives the equivalent positions' ip the space group P1. ”Il;o *
derive them, it is necessary to choose a starting position and operate on t 11
position with the various symmetry elements that' are present. The c.onvenn;)ng 1
starting position is at 1, close to the origin anq with §rpall positive valuestq x;l); §
and z (the latter indicated by the + sign). This position must be presen 1r} e '
other unit cells (definition of the unit cell) and three of these are shown as 1',
and 1”.

Consider now the effect of the centre of symmetry, £, at the origin of the unit ce

iti iti i i t 2 indicates"
i on position 1 to create position 2. The minus sign at 2
Reantive » eigh 2 is enantiomorphous:

i i hows that position
negative z height and the comma § . ’ . orphous §
relative to position 1. The effect of any reflection or inversion operation is t&

%o
10‘

: : centre of
1 " iti symmetry
construction positive y
lines z value

Fig. 6.8 Space group PI. Coordinates of equivalent positions: xyz, Xjz

197

Fig. 6.9 Two tetrahedra related by a centre of symmetry.

convert a left-handed object into a right-handed one. This is shown in Fig. 6.9
for two tetrahedra which are positioned so as to be related to each other by
inversion through a centre of symmetry. Thus, although individual tetrahedra do
not possess a centre of symmetry, groupings of tetrahedra may possess one.
Positions 2/, 2" and 2" in Fig. 6.8 are automatically generated from position 2
because they are equivalent positions in neighbouring cells.

The next step is to write down the coordinates of the equivalent positions. This
is done in the form x, y, z where x, y and z are the fractional distances, relative to the
unit cell edge dimensions, from the origin of the cell. Let position 1 have fractional
coordinates x, y and z. Position 2 is then — x, — y, -- z. Position 2" is at | — x,
I —y, —z etc. If a position lies outside the unit cell under consideration, an
cquivalent position within the unit cell can be found, usually by adding or
subtracting | from one or more of the fractional coordinates. Position 2" is out-
side the cell because it has a negative z value; the equivalent position inside the
cell is given by a displacement of one unit cell in the z direction and has
coordinates | — x,1 — y,1 — z. In shorthand, these coordinates are written as X, ¥,
z. The unit cell in the space group P1 has two equivalent positions, x, y, z (position
1) and X, y, Z (height ¢ above 2").

Although only one centre of symmetry is necessary to generate the equivalent
positions in P1 other centres of symmetry are automatically created. For
cxample, the centre of symmetry at u arises because pairs of positions such as 1
und 2”, 2 and 1", etc., are centrosymmetrically related through u. This may be
scen from the diagram or may be proven by comparing coordinates of the three

positions. Positions 2 and 1 are equidistant from u and lie on a straight line
that passes through u.

The positions x, v, z and X, y,  are called general positions and apply to any value
of x, y and z between 0 and 1. In certain circumstances, x, y, z and X, j, Z coincide,
¢.g.if x = y = z = 4. In this case, there is only one position, called a special position.
The special positions in P1 arise when the general position lies on a centre of
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1 ial positions are, therefore, (0,0, 0),
symmetry. The coordinates of the onefold specia
(g 0,0),(0,4,0),(0,0,3),4,4,0,(1,0.), (0,3, 3 and (5.3, 1), and correspond to the

corner, edge, face and body centres of the unit cell.

6.2.2 Monoclinic C2

The convention adopted here for labelling the unique twofold 2'1):81, in ’
monoclinic space groups is that which is in most common use, namely, wit b z:;
the unique axis. It is a pity that thisis different to the use of c as th; qmqlllle 'flxnow
tetragonal, trigonal and hexagonal cells but this usage for monoclxmg cellsis o
so well established that it is unlikely to be altered. With b as the uomque axis th
unit cell projects onto the xy plane as a rectanglg (because y = 90°), a; tstlilow;l 1cr;
Fig. 6.10. Since f # 90°, the z axis is not perpendicular to the plane of the pap

is incli vertical. '
bu'}gselgfg:rfgi;(; titr:espace group C2 means that the' Bravgis }attice h?s a latn;:‘e 7
point at the origin (with coordinates 0,0,0)and a }gttlce pointin the middie of t § :
side bounded by a and b, at $,3,0. For any position X, y,1 zin tl}ls space group, |
there will, therefore, be an equivalent position gt X+ »Y +3, 2 (1..e. (x,y,2) |
1 1 0)). This C-centring has no representation in the right-hand diagram of -

e 1 i lemen
i in the left-hand diagram. The main symmetry ¢leme
B & e oo fold nota paraliel to b and coincident with b (i €

i is a two fold rotation axis(d),
g:ts;;gprflsl:g:lgh x =0, z=0). A twofold rotation axis in the plane ?jfbth
paper is indicated by an arrow. Other symmetry elemet_lts are generate fyl
combination of the twofold rotation axis and thg C-centring, namely, a t\go (o)
rotation axis (e) parallel to b, cutting the x axis at 4 and the z axis at 0, ‘ag
two twofold screw axes (f and g), again parallel to b and cutting the X axis’

N\O O =

+

+

S OHOL»

\O OU

2y axis /l y

-0 O«

—_

Fig. 6.10 Monoclinic space group C2
Coordinates of equivalent positions
000:xyz, XyZ
Uo:x+iy+izi—x3+y?
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}and § and z at 0. Screw axes in the plane of the paper are represented as
half arrows. :

Space group C2 has four equivalent positions. To see how they arise, let us take
position 1 as a general position; 1’, 1” and 1" are the equivalent positions in
neighbouring unit cells. The effect of C-centring is to create position 2 which is
displaced by (3,4, 0) from position 1. The effect of the twofold rotation axis(d)isto
rotate position | about the b edge by 180° and credte position 3’. As 1 has a
positive z coordinate, 3’ must have a corresponding negative z value. Similarly,
positions 2 and 4’ are related by this same twofold rotation axis; 4 and 4’ are
identical positions in adjacent cells. Alternatively, 4 may be regarded as generated
by the action of the C-centring on 3'.

The new twofold rotation axis (¢) that is created relates, for example, positions
1 and 3,2 and 4, 1" and 3/, etc. The twofold screw axis (f) relates, for example, 1
and 4:in a combined operation, | is translated halfway along y, retaining its x and
z values, to the position shown as the dotted circle and then rotated 180° about
the axis parallel to y and at x =, z = 0, to arrive at 4. Repetition of the process
takes position 4 to 1’ which effectively takes us back to the starting position.
Similarly, related sets of positions are 3’, 2 and 3”; 3,2’ and 3”; 1", 4’ and 1”, etc.
By similar reasoning, screw axis (g) relates positions 3, 2 and 3", and so on.

The coordinates of positions 1 to 4 are as follows: x, V.Z2;x+5y+13,2; %, y,
—z;3—Xx,3+ ¥, — z. As positions 3 and 4 lie below the plane of the paper, they
are outside the chosen unit cell. The positions equivalent to 3 and 4 that are inside
the cell are displaced by one cell along z and have coordinates %, y, 7 and
} — x,4 + y, Z. These four positions can be grouped into two sets: x, y, z; X, y, Zand
X+ % ¥ +%,2;5— X, 3+ y, Z such that the second set is related to the first by the
lattice centring (i.e. by adding 3,3, 0 to the coordinates). It is common practice
(c.g. in International Tables of X-ray crystallography) to list only those positions
that belong to the first set and at the same time specify that the other positions are
created by the lattice centring. This leads to considerable shortening and
simplification in labelling the equivalent positions of the more complex and
higher symmetry space groups.

The general positions in space group C2 are fourfold, i.e. there are four of
them per cell, but if they lie on the twofold rotation axes their number is
reduced to two and they become special positions. Thus, if x = z = 0, the two
positions have coordinates 0, y, 0 and 4, y + 4, 0. A second set of special

| positions arises when x = 0, z = } (the reader may like to check that there is

i twofold axis parallel to b and at x = 0, z = 4 not indicated in Fig. 6.10: it is

at height ¢/2 above axis d).

We have seen earlier how the presence of lattice centring or elements of space
symmetry lead to systematically absent reflections from the X-ray patterns. For
. space group C2, the C-centring imposes the condition that only those reflections
that satisfy the rule, for hkl: h+ k =2n, may be observed. The 2, screw axes

E purallel to bimpose the condition for reflection that for 0k0: k = 2n. However, this
| In also a consequence of the C-centring condition, for the special case that h =,
i |~ 0 and so does not lead to any extra absences. '
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6.2.3 Monoclinic C2/m

This space group, shown in Fig. 6.11,is also C-centred and has, as its pl‘.lnC’II]z)lill
symmetry elements, a mirror plane perpendicular ()toa thofold axis. The
twofold axis is parallel to b, by convention, and therefor.e the mirror plane 1ls the
xz plane. Two mirror planes are present in the cell; they intersect bat 0 and 3 and
are shown as thick vertical lines in Fig. 6.11. As in the space group 1CZ, there are
two twofold rotation axes, parallel to b and intersecting a at 0 and 3, and two 2,
screw axes parallel to band intersecting a at  and 3. All of these 2 and 2, axes arle j
at ¢ height equal to zero. An additional set of axes, not shown, occurs atc=73.
Also present, as will be discussed later, are centres qf symmetry 'fmd glide plan_e;

The space group C2/m contains eight general eq'uwalent‘ positions, all of whlc E
may be generated from position 1 by the comblneq action of the C-ceptnng,
twofold axis and mirror plane. Thus, the C-centring creajtes an equlvalent' {
position, 2, after translation by 1,,0. Action of the twofold axis passing thr_ough
the origin generates 6’ from 1. Position 3 is similarly re!ated to 2 by the action of 4
the twofold axis passing through a = 1, ¢ = 0. Alternatively, 3 may be gene.rz.ited
from 6 by the C-centring condition. The mirror planeatb =0 gege}'ates positions
8" from 1 and 7” from 6'. Note that 8” and 1 are at the same positive ¢ valu; ‘and
that 8" contains a comma to indicate its enantiomorphous relation to 1. qumons 3
4 and 5 are related to 3 and 2 by the mirror plane that cuts b at 1; alternatively, 4 4
and 5 are generated from 7" and 8” by the centring. o N

The coordinates of the eight equivalent positions within the cell, tlogethe:
with their number, if shown, are x, y, z (1); x +iy+3, 2 (2); 1 X3+ 2
1oxi-yiz3+ x, 3= y,2(5:% 3,2 % 3, 2, X, J» z(8). These eight positions I,I;; y
be grouped into two sets of four positions that are related by the .C-cent.rx.ng.
coordinates of both sets are given in Fig. 6.11. Several sets of spec;xal positions ar
possible in this space group, e.g. if y = 0, a fourfold set occurs which contains x, (

7

7" ¢ 78
_G O- _@ O_(___ l N l —0
yojlex 010 ' '
8’ 1 P— @] Q
4 3 : i
O10O- o ' L
JOJIOX ' |
' 5|2 7 |6 T (|) CI)
7| 6 9
-0 0= L OO0 e 4l
9o 90

Fig. 6.11 Monoclinic space group C2/m. Coordinates of equivalent positions
000:xyz, xyz, Xyz, XyZ 1 1 )
%0:%+x%+yz,%+x%—yz,%—-x%+yz,5—x5—yz
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7;%0,z;x+3,4, 2,4 —x, 4, 2 If both x and y = 0 and z = 1, a twofold set arises
which contains 0, 0, 4 and 4, 4, 1.

The combination of a mirror plane perpendicular to.a twofold axis, together
with the C-centring, leads to the generation of several other symmetry elements.
These include 2, screw axes parallel to b, centres of symmetry and glide planes.
For example, the centre of symmetry created at the origin relates positions 1 and
7”,6" and 8”. The thick dashed line g in the right-hand diagram indicates a glide
plane for which the translation component is a/2 and reflection is across a plane
lying perpendicular to b. Such a glide plane is called ‘an a glide perpendicular to
b’. Thus, position 1 is translated by a/2 to the position shown as the dotted circle;
reflection across the plane, g, which cuts b at } leads to position 5. Repetition of
the process converts 5 into 1’, which is equivalent to the starting position, 1.
Similarly, positions 8, 2 and 8" are related by the glide plane which cuts b at 3.

The presence of glide planes in a crystal may sometimes by detected by the
absence of a set of X-ray reflections. For an a glide perpendicular to b, the
condition limiting the hO! reflections is that h = 2n (i.e. only even h values may be
observed). In the space group C2/m, this condition is part of the more general
condition for C-centring, namely, that for hkl, h + k = 2n. Independent evidence

for the existence of the glide plane is therefore not immediately available from the
X-ray patterns.

6.2.4 Orthorhombic P222,

This primitive orthorhombic space group has twofold rotation axes parallel to
x and y and a twofold screw axis parallel to z. The feature of this space group,
shown in Fig. 6.12, which makes the generation of the equivalent positions a little
difficult to visualize, is that the twofold rotation axes parallel to y occur at a ¢
height of ;. Consider first the effect of the axis parallel to yata= 0and ¢ = 1. The
starting position | has a small positive z coordinate of + z. The twofold axis is at
z =}; therefore, position 1 is at (1 — z) below the twofold axis. The new position, 2/,

ZO O "2 Q O & 1/4 — § . 1/L
37 | 3| 1
1/1. -— ‘ ——-»1/1.
o |27 s 23
L’O @) O 8 Y — £ 4 —,

£ 00 A |

2, axis paratlel to z

Fig. 6.12 Orthorhombic space group P222,. Coordinates of equivalent positions xyz,
iyi—z’ xyf’ fﬂ"'l
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formed by rotation about this axis is, therefore, at (§ — z) above the twofold axis,
i.e. it has z coordinate % + ( — z) = 4 — z. This is shortened to { - in Fig. 6.12.
Consider now the twofold axis parallel to x and at b=c=0 (i.e. passing
through the origin). This axis generates positions 3” from 1 and 4" (its
equivalent in the cell below) from 2’. With these two axes we have generated
all four equivalent positions in this space group. The third axes, the 2, axis
parallel to z, is automatically generated by the combined action of the other
two axes and is not independent of them. This 2, axis relates, for example,
positions 1 and 4" (i.e. translation of position 1 by ¢/2 followed by 180°
rotation about ¢ gives 4"). Positions 2’ and 3" are similarly related. The
coordinates of the equivalent positions are given in Fig. 6.12. The only
symmetry element which causes systematically absent reflections in P222, is
the 2, axis parallel to z, i.e. only 00/ reflections for which /=2n may be
observed. Several sets of twofold special positions arise, e.g. if y =z =0 (i.e.
x,0,0;x,0,3).

6.2.5 Orthorhombic F222

The new feature of this space group is that it has a face centred lattice which, as
can be seen from Fig. 6.13, leads to a considerable increase in the number of
symmetry elements and equivalent positions. The basic symmetry elements are
three intersecting twofold axes, parallel to x,y and z and passing through the
origin. Many other twofold axes occur automatically, e.g. one intersecting the cell
ata =1, c = 1 and parallel to b and another at a =4, b =} and parallel to c. Also
many 2, axes are created, e.g. one at a = 0, b =  parallel to cand another atb = ¢,
¢ =0 and parallel to a. ‘

There are sixteen general equivalent positions which fall into four groups
related by the face centring condition. The four sets are related as (0, 0,0):(3,3,0);
(1,0,4) and (0,4, 1). Thus, position 1, (x, y, 2), is related to positions 2 to 4:(x +3,
v+ 2 (x+1, y, z+2) and (x, y +4, z+3). Generation of the remaining
cquivalent positions by the action of the twofold axes should be a straight
forward matter. Coordinates of the equivalent positions are given in Fig. 6.13.

6.2.6 Tetragonal 14,

The principal axis in the space group 14, (Fig. 6.14) is a 4, screw axis parallel to
z. There are four such axes which intersect the unit cell at x =32, y=3; x=32,
y=% x=4% y=32and x=2, y=3. The operation of a 4, screw axis involves
translation of 4 combined with rotation by 90° about the axis. The positions 1 to 4
are related to each other by the 4, axis at s, and it can be seen that these positions
lic on a spiral about s. The symbois of screw axes s and ¢ are reversed because their
direction of rotation is different; s involves a clockwise rotation and t an
unticlockwise rotation (e.g. the sequence of positions 7', 2, 5, 4').

The body centring relates positions 1-4 to 5-8 and the cell contains eight
general equivalent positions. These are listed in Fig. 6.14. Several twofold axes
parallel to z are also generated. Two conditions are imposed on the reflections
which are possible for this space group. For the body centring, only the reflec-
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the unit cell; the symbol 1(a) indicates that there is only one position in this set
and (a) is a label, the WyckofT lablel, for this (set of) position(s). Strontium also
occupies a onefold special position, 1(b), at the body centre of the cell. Oxygen
occupies a threefold special position 3(d); the coordinates of one of these
positions are given—0,0,4—and the only remaining information that is needed
from the space group is the coordinates of the other two oxygen positions. From
International Tables, these are 0,4,0 and £,0,0.

From this information, the unit cell and atomic positions may be drawn, first as
a projection down one of the cubic cell axes (Fig. 6.15a) and then as an oblique
projection to show the atomic positions more clearly (Fig. 6.15b). The coordi-
nation environment of each atom may be seen in (b) and interatomic distances
calculated by simple geometry. The octahedral coordination by oxygen of one of

O- 4 axis
1,4 1
oY
Fig. 6.14 Tetragonal space group 14,. Coordinates of equivalent positions N \/// R
000:xyz, Xjz, 3+ xt+z y3—-x31+z 0 N /\\
FECNIIE RNINE Gt SEpS SEIVE BNPWE BYRVE S SRV - Sy J O e N
222- 2¥y T2 202 2= V3t —yXarTnLzTy X close packed
: : a Sr,0 layer
tions hkl:h+k+1=2n may be observed. The 4, screw axis places on the '
00! reflections the condition that I = 4n. 1
0 0”2 0
6.3 Space groups and crystal structures
The purpose of this section is to show how drawings or models of crystal n ~0
structures may be made if one knows the space group and essential atomic ~ o
coordinates of the structure. As examples, two simple structures are considered in o Ti 0 1/2
some detail. This is then followed by a more systematic approach to crystal P @ O 57
chemistry in Chapter 7. Oo b

6.3.1 The perovskite structure, SrTiO,

The basic information that we need to know is the following:

Unit cell: cubic, a = 3.905A
Space group: Pm3m(number 221 in [ nternational Tables for
X-ray crystallography, Vol. 1)
Atomic coordinates: Ti in 1(a) at 0,0,0
Srin 1(b) at 3,3,3
Oin 3(d) at 0,0,3

This is, in fact, a very simple example since although the space group Pm3mis |
complicated, as are all cubic space groups, all the atoms in perovskite lie on
special positions. There are forty-eight general equivalent positions in the space 1
group Pm3m but a large number of special positions arise when atoms lie on ]
symmetry elements. Titanium occupies a onefold special position at the origin of ,

(c)
Fig. 6.15 The perovskite structure of SrTiO,
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the corner titaniums is shown. The Ti—O bond length = a/2 =1.953 A. The }
strontium in the cube centre is equidistant from all twelve oxygens at the centres
of the edges of the unit cell. The strontium—oxygen distance is equal to half the
diagonal of any cell face, i.e. a/ \/5 or 2.76 A (from the geometry of triangles, the
length of a cell face diagonal is equal to \/a” +a?). B

Each oxygen has two titaniums as its nearest cationic nei ghbours, ata distanéé
of 1.953 A, and four strontium atoms, coplanar with the oxygen at a distance of
2.76 A. However, eight other oxygens are at the same distance, 2.76 A, as the four
strontiums. It is debatable whether the oxygen coordination number is best
regarded as two (linear) or as six (a grossly squashed octahedron with two short
and four long distances) or as fourteen (six cations and eight oxygens). No firm 3
recommendation is madé!" o

Having arrived at the unit cell of SrTiO;, the atomic coordinates, coordination
numbers and bond distances, we now wish to view the structure on a rather larger:
scale. There are several questions which may be asked. Does the structure have a
close packed anion arrangement? The close packing approach provides a good
way of classifying many crystal structures, Chapter 7. Can the structure be
regarded as some kind of framework with atoms in the interstices? Many silic
structures may be thought of in this way. Can smaller polymeric units in th‘,e\;a
structure be identified? Orthosilicates have, for example, discrete Si0, 4+
tetrahedra. Some answers to these questions are as follows. it

Perovskite does not contain close packed oxide ions as such but the oxygens I
and strontiums, considered together, do form a cubic close packed array with the
layers parallel to the (111) planes (Fig. 6.15b and c). To see this, compare the
perovskite structure with that of NaCl(Fig. 5.9). The latter contains Cl~ ions &
the edge centre and body centre positions of the cell and is cubic close packed. B
comparison, perovskite contains O~ ions at the edge centres and Sr?* at thejj
body centre. The structure of the mixed Sr, O close packed layers in perovskite i |
such that one quarter of the atoms are strontium, arranged in a regular fashion§
(Fig. 6.15¢).

It is quite common for fairly large cations, such as Szt (r=1.13 A) to pla
apparently different roles in different structures, i.e. as twelve coordinate packin
ions in perovskite or as octahedrally coordinated cations within a close packetf
oxide array, as in SrO (rock salt structure).

The formal relation between rock salt and perovskite also includes the Na*
and Ti%* cations as both are in octahedral sites. Whereas in NaCl all octahedr
sites are occupied (corners and face centres), in perovskite only one quarter (th
corner sites) are occupied. ' ‘

Perovskite may also be regarded as a framework structure constructed fro
corner-sharing (TiO) octahedra and with Sr2* ions placed in twelve-coordina
interstices. The octahedral coordination of one titanium is shown in Fig. 6.15b}
each oxygen of this octahedron is shared with one other octahedron, such that the
Ti-O-Ti arrangement is linear. In this way, octahedra are linked at their corners)
to form sheets, Appendix 2, Fig. A2.4c, and neighbouring sheets are linked?
similarly to form a three-dimensional framework. By
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A further‘ dis.cussi.on of crystal structures, including close packing and linked
polyhf:dra, is given in- Chapter 7, while perovskites and their use as ferroelectric
and dielectric materials are discussed in Chapter 15. ‘

6.3.2 The rutile structure, TiO,

We need to know the following information:

Unit cell: tetragonal, a = 4.594, ¢ = 2.958 A

Space group: P4,/mnm (number 136)

Atomic coordinates: Ti in 2(a) at (0,0, 0), (4,1,1
O in 4(f) at (x, x, 0), (X, X, 0),

1
(7+xa%_ x,%),(%—x,%+ xa%)

As in the perovskite structure, only special positions are used to accommodate
atoms and the general positions (sixteenfold) are unoccupied. The titanium
positions are fixed at the corner and body centre but the oxygen has a variable
parameter, x, whose value must be determined experimentally. Crystal structure
determination and refinement gives x = 0.30 for TiO,. The unit cell of rutile is
shown projected onto the xy plane in Fig. 6.16(a).

We next need to determine the coordination environment of the atoms. The
body centre titanium at (3,3,3) is coordinated octahedrally to six oxygens. Four
uf th;se~—two at 0 and two at 1 directly above the two at 0—are coplanar with
titanium. Two oxygens at z = 4 are collinear with titanium and form the axes of
lh; octahedron. The corner titaniums are also octahedrally coordinated but the
orientation of their octahedra is different (Fig. 6.16b). The oxygens are coordi-
n.ute('l trigonally to three titaniums: e.g. oxygen at 0 in (a) is coordinated to
:ll?mum atoms at the corner, at the body centre and at the body centre of the cell
elow.

Since the oxygen atoms form the corners of TiO, octahedra this means that
citch corner oxygen is shared between three octahedra. The octahedra are linked
by sharing edges and corners to form a three-dimensional framework. Consider
!hc TiO4 octahedron in the centre of the cell in (b); a similar octahedron in
identical orientation occurs in the cells above and below such that octahedra in
mvl_iacent cells share edges to form infinite chains parallel to ¢ (see Appendix 2
Iig. A2.4a). For example, titanium atoms at z = + £ and — 1in adjacent cells are’
both coordinated to two oxygens at z=0. Chains of octahedra aré similarly
formed by the octahedra centred at the corners of the unit cell. The two types of
¢hains, which differ in orientation about z by 90° and which are ¢/2 out of step
with each other, are linked by their corners to form a three-dimensional
(ramework (Fig. 6.16¢). r

The rutile structure is also commonly described as a distorted hexagonal close

| pucked oxifie array with half the octahedral sites occupied by titanium. A 3 x 3
- block of unit cells is shown in Fig. 6.16(d) with only the oxygen positions marked.
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Corrugated' close packed layers occur, both horizontally and vertically. This .
contrasts with the undistorted hexagonal close packed arrangement (Fig. 6.16¢), i
in which the layers occur in one orientation only (horizontally). i

Very recently, an alternative way of describing the packing arrangement of
oxide ions in rutile has been proposed. The oxide ion arrangement is a slightly
distorted version of a new type of packing called primitive tetragonal packing
(p-t.p.), which is characterized by fourfold symmetry and a sphere coordination
number of eleven. This contrasts with hexagonal and cubic close packing which
have a packing sphere coordination number of twelve and body centred
tetragonal packing which has a coordination number of ten. More details are
given in Chapter 7.

The bond lengths in TiO, may be calculated either graphically if (a) is drawn to
scale or by geometry; e.g. for the Ti—O bond length between titanium at CRE)
and oxygen at (0.3, 0.3, 0) the difference in a and b parameters of titanium and
oxygen is (3 —0.3)a=092 A. From a right-angled triangle calculation, the '}
titanium—oxygen distance in projection down c (Fig. 6.16a) is /0.92% + 0.92.
However, titanium and oxygen have a difference in ¢ height of (3 — O)c = 1.48A 4
and the Ti—O bond length is therefore equal to . /0.92% + 0.92% + 1.48% = 1.97 A
The axial Ti—O bond length between, for example, Ti(3,3,3) and 0(0.8,0.2,0.5) is
easier to calculate because both atoms are at the same ¢ height. It is equal to

J203 x 4594) = 1.95A.

Some of the symmetry elements in the space group P4,/mnm are shown in A
(Fig. 6.16f); most of them should be readily apparent on inspection of (a). Thus,
the 4, axes are located halfway along the cell edges although no atoms lie on these |
4, axes. The oxygen atoms are arranged on spirals around the 4, axes such that
translation by ¢/2 and rotation by 90° converts one oxygen position to another.
Centres of symmetry are present, for example, at the cell corners and also 2and 2,
axes and (not shown) mirror planes and glide planes.

/

Questions

6.1 What point groups result on adding a centre of symmetry to point groups(a
1, (b) 2, (c) 3, (d) 3, (¢) 4, () 222, (g) mm2, (h) 4mm, (i) 6, (j) 6, (k) 6m2?

6.2 What point groups result from the combination of two mirror planes at (a
90° to each other, (b) 60°, (c) 45°, (d) 30°?

6.3 What point groups result from the combination of two intersecting twofold
axes at (a) 90° to each other, (b) 60°, (c) 45°, (d) 30°? !

6.4 An atom in an orthorhombic unit cell has fractional coordinates 0.1, 0.15 and

' 0.2. Give the coordinates of a second atom in the unit cell that is related to the '
first by each of the following, separately: (a) body centring, (b) a centre of
symmetry at the origin, (c) a 2 axis parallel to z and passing through the
origin, (d) a 2, axis parallel to zand passing through the origin, (¢) A-centring. |

6.5 Li,PdO, hasan orthorhombic unit cell, a = 3.74, b = 2.98, ¢ = 9.35 AZ=2,
space group Immm. Atomic coordinates are: Pd:2(a) 000; Li:4() 00z:z= §
0.265; O:4 (j) 04z:z = 0.143. Draw projections of the unit cell, determine
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coordination numbers and bond lengths and describe the structure. (J. Solid
State Chem., 6, 329, 1973)

6.6 Repeat the above question but for the structures of (a) ilmeﬁite (Table 16.8),
(b) garnet (Table 16.7) and (c) spinel (Table 16.5).

References

F. Donald Bloss (1971). Crystallography and Crystal Chemistry, Holt, Rinehart, Winston.

Lesley S. Dent Glasser (1977). Crystallography and Its Applications, Van Nostrand
Reinhold.

N.F.M. Henry and K. Lonsdale (Eds) (1952). International Tables for X-ray
Crystallography, Vol. 1, Kynoch Press.

M.F.C. Ladd and R.A. Palmer (1978). Structure Determination by X-ray
Crystallography, Plenum Press.

Helen, D. Megaw (1973). Crystal Structures, A Working Approach, Saunders.

A ];38 V&;essgtlan6d P. G. Bruce (1982). Tetragonal Packed Crystal Structures, Acta Cryst.,

R. W. G. Wyckoff (1971). Crystal Structures, Vols 1 to 6, Wiley.





